# **Spacecraft Vibration Control**

### **A Tutorial**

Dr. T. Tupper Hyde Honeywell Inc. Satellite Systems Operation Glendale, Arizona

# **Hubble Space Telescope**



Disturbance: Reaction wheel unbalance Performance:  $\theta_{RMS}$  < .007 arcsec



### **Solution: RWA Isolation**



Copyright, Honeywell Inc., 1997

## **Precision Spacecraft**

- Optical Payloads
  - astronomical telescopes
  - interferometers / sparse optical arrays
  - earth imaging
  - lasercom intersatellite links
  - beam forming
- RF Payloads
  - radar interferometry
- Micro-gravity facilities

Next Generation Space Telescope (NGST)- Lockheed Martin Concept



### **Astronomical Telescopes**



### **Interferometers**



### **Stellar Interferometry Mission (SIM)**

**Disturbance: RWAs, optics motion Performance: OPD < 1 nm RMS** 



### **Future Observatories**



Copyright, Honeywell Inc., 1997

## **Commercial Earth Imaging**



### Planned Systems ('97-'04)

### Quickbird

Disturbance: RWAs, SADs Performance: LOS  $< 0.2 \mu rad$ 

| Country    | Owner<br>/OBJ (1) | Program           | Sched<br>Date | Inst<br>Type (2) | Resolution in Meters |        |    |
|------------|-------------------|-------------------|---------------|------------------|----------------------|--------|----|
|            |                   |                   |               |                  | P                    | M      | R  |
| France     | G/O               | Spot 5B           | '04           | P/M              | 5                    |        |    |
| ប.ន        | GIO               | EOS AM-2 / L-8    | '04           | P/M              | 10                   | 30     |    |
| Japan      | GIO               | ALOS              | '02           | P,M,R            | 2.5                  | 10     | 10 |
| Europe     | G/R               | ENVISAT           | 199           | R                |                      |        | 30 |
| France     | GIO               | Spot 5A           | 199           | P/M              | 5                    | 10     |    |
| India      | GIO               | IRS-1D            | '99           | P/M              | 10                   | 20     |    |
| U.S.       | CIO               | GDE               | '98           | P                | 1                    |        |    |
| U.S.       | C/O               | OrbView           | '98           | P/M              | 1,2                  | 8      |    |
| ប.ន.       | C/O               | Resource 21       | '98           | M                |                      | 10,100 |    |
| U.S.       | C10               | Space Imaging     | '98           | P/M              | 1                    | 4      |    |
| Korea      | GIO               | KOMPSAT           | '98           | P/M              | 10                   | 10     |    |
| U.S./Japan | GIO               | EOS AM-1          | '98           | M                | 15                   | 15     |    |
| ប.ន        | GIO               | Landsat 7         | '98           | P/M              | 15                   | 30     |    |
| Europe     | GIO               | ENVISAT           | '98           | R                |                      |        | 30 |
| U.S.       | C10               | Space Imaging     | '97           | P/M              | 1                    | 4      |    |
| France     | GIO               | Spot 4            | '97           | P/M              | 10                   | 20     |    |
| U.S.       | C/O               | <u>EarthWatch</u> | 197           | P/M              | 1                    | 4      |    |
| U.S.       | C10               | <u>EarthWatch</u> | '97           | P/M              | 3                    | 15     |    |
| U.S.       | G/E               | CTA Clark         | '97           | P/M              | 3                    | 15     |    |

### **Commercial Communications Constellations**





Teledesic
Disturbance:
RWAs, SADs,
UL/DL Antennas
Performance:
Lasercom LOS
< 1 µrad

- Peak DC power 13.6 kW
- Average DC power 4.6 kW
- Mission life 8 yrs. (10 yrs. expendables)
- Stabilization & positioning sensing 3 axis stabilized; GPS
- Length 12.7 meters (41.67 ft.)
- Wet mass 3,100 kg (6,834 lbm)
- Dry mass 2,500 kg (5,512 lbm)
- Propellant 600 kg (1,323 lbm)
- User service links -- up 432
- User service links -- down 260
- Frequency -- Earth to space 28.6-29.1 and 29.5-30.0 GHz
- Frequency -- space to Earth 18.8-19.3 and 19.7-20.2 GHz
- Intersatellite links 6

#### • Intersatellite link rate 4.5 Gbps

- Satellite switch rate 17.5 Gbps
- Aggregate data rate 8.7 Gbps



# **Micro-gravity Facilities**



### **Space Station Experiment Rack**

Disturbance: crew, pump/fans, rotating mechanisms Performance: jitter  $< 1 \, \mu g$ 



# Disturbance to Performance

### Honeywell

## Spacecraft Vibration Control.. A Systems Problem





Copyright, Honeywell Inc., 1997 tutorial\_imox.ppt

## **Spacecraft Disturbances**

- Momentum Devices
  - Reaction Wheel (RWAs)
  - Momentum Wheel (MWAs)
  - Control Moment Gyroscopes (CMGs)
- Mechanisms
  - Solar Array Drives (SADs)
  - Antenna pointing gimbals
  - Rotating and slewing payloads
- Payload induced
  - cryo-cooler
  - moving components

- Commanded Slews
  - body re-target
  - appendage slew
- Thermal Effects
  - thermal snap
  - non-zero CTE
  - micro-dynamics
- Manned
  - crew push-off
  - exercise equip.
  - pumps/fans

## **Spacecraft Modeling**

- Choosing the correct model fidelity is key
- Closely consider disturbance and performance definitions
- Must have:
  - correct rigid body mass/inertia
  - good first mode frequency and modal participation
  - about right modal density (exact modes not needed)
  - assume half percent damping if no damping treatment

### • Options

- Full blown FEM, usually not available early in design
- Conceptual design FEM, trusses and plates
- "Stick" model, beams and masses, misses local modes
- Rigid body, may add "Q" effect of modes

## Simplest Disturbance to Performance Model



Copyright, Honeywell Inc., 1997

## **Spacecraft Performances**

- Line of Sight
  - Definition of accuracy, smear, and jitter
  - RMS
  - Effect of time integration
  - Effect of optical servos (fast steering mirrors)
  - Image motion compensation (IMC)
  - Mode of operation (acquisition, coarse/fine pointing)
- Optical Pathlength Difference
  - RMS causes blur on fringe detector
  - Effect of metrology and optical delay line servos
  - Mode of operation (acquisition, astrometry, imaging)
- Microgravity
  - RMS
  - peak

# **Disturbance Isolation**

## **Input Isolation**

- Passive
  - visco-elastic
  - fluid
  - eddy current
- Active
  - magnetic
  - voice-coil
  - smart material (piezoelectric)
- Hybrid
  - passive and active components





# **EUREKA Isolation System**



| Characteristics         |                                          |  |  |  |
|-------------------------|------------------------------------------|--|--|--|
| Application             | Gimballed<br>Momentum<br>Wheel Isolation |  |  |  |
| Payload Weight          | 225 lb                                   |  |  |  |
| Isolation System Weight | 3 lb                                     |  |  |  |
| Element Weight          | 0.615 lb                                 |  |  |  |
| Number of Elements      | 3                                        |  |  |  |
| Number of Axes          | 3                                        |  |  |  |
| Envelope                | 29 in.                                   |  |  |  |
| Temperature Range       | 0 to 120 °F                              |  |  |  |
| Life                    | 15 years                                 |  |  |  |
| Isolation Performed     |                                          |  |  |  |
| Attenuation at 100 Hz   | 0.0005 to 1                              |  |  |  |
| Break Frequency         | 1.5 Hz                                   |  |  |  |
| Amplification           | 3.2 to 1                                 |  |  |  |
| Alignment Stability     | 0.05 degree                              |  |  |  |
| Random Vibration        | Latched                                  |  |  |  |
| Sine Wave               | Latched                                  |  |  |  |

M54559/CLR

### Honeywell

# **MATRA Isolation System**



| Characteristics         |                            |  |  |  |
|-------------------------|----------------------------|--|--|--|
| Application             | RWA Vibration<br>Isolation |  |  |  |
| Payload Weight          | 35 lb.                     |  |  |  |
| Isolation System Weight | 12.2 lb                    |  |  |  |
| Element Weight          | 0.75 lb                    |  |  |  |
| Number of Elements      | 6                          |  |  |  |
| Number of Axes          | 6                          |  |  |  |
| Envelope                | 20 OD x 4.5 in             |  |  |  |
| Temperature Range       | -15 to +65 C               |  |  |  |
| Life                    | 10 Years                   |  |  |  |
| Isolation Performed     |                            |  |  |  |
| * Attenuation at 100 Hz | 0.01 to 0.05               |  |  |  |
| * Break Frequency       | 4 to 10 Hz                 |  |  |  |
| * Amplification         | 8:1                        |  |  |  |
| * Alignment Stability   | 0.05 degree                |  |  |  |
| Random Vibration        | 19g rms                    |  |  |  |
| Sine Wave               | 12g                        |  |  |  |

## JPL Hexapod Isolation Results



Copyright, Honeywell Inc., 1997

# Passive & Active Structural Control

# **Extended Bandwidth Attitude Control and Active MIMO Structural Control**

- Push ACS bandwidth into region of flexible spacecraft modes
  - don't limit bandwidth to decade below
  - don't "notch" (gain stabilize) flex modes
  - but control (actively stiffen & damp) flex modes
- This is control intensive
  - many states in computer at high sample rates
  - implies high bandwidth actuators and sensors
  - need for good models... on-orbit ID
- This is a big topic
  - more for another day!

# **Strut Damping**



### **Passive**

- viscoelastic
- fluid
- smart material

### Active

- lead screw
- hydraulic
- smart material



## Hybrid

passive & active components

## **D-Strut**<sup>TM</sup> Truss Dampers





#### **PARAMETERS**

- Length -- 18.16-in (longeron), 26.44-in (diagonal)
- Maximum Diameter -- 1.5-inches (bonded version)
- Tube diameter -- 1.5-inches
- Flexural seal -- Metal Single-convolute bellows
- Weight -- 0.5-lbs plus tube, typical total 1.1-lb
- Load capacity -- greater than 500-lbs
- Static Stiffness -- family range 25000 to 60000-lb/in
- Dynamic Stiffness -- range 100,000 to 190,000-lb/in
- Damping coefficient -- 50 to 250-lb.sec/inch

#### **FEATURES**

- Easily tuned for desired frequency and damping
- Flight qualified design and materials
- Damping linear over displacement range
- Fast settling time for pointing/tracking systems

## **Tuned Mass Dampers**



Undamped 0.1% damping Settling time=11min 1.8 Hz

Damped

1.6 Hz

8.4% damping



0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 Time (sec)

Shown for 22 foot boom (cantilever mode) Total mass of devices for 2 axis=3/4 lb. in flight configuration



# Payload Isolation and Precision Pointing

### Passive Isolation of a Lasercom Terminal

- Operational isolation
  - LOS rotations critical, translations also to reduce excitation of telescope modes
  - FSM control good at low frequency but isolation required to reduce LOS jitter at high frequency
- Launch isolation
  - protect sensitive optics and mechanisms from launch vibrations
- Kinematic 6 DOF mount desirable
  - strains in S/C do not induce strains in terminal

## **Graphical Design Tool**



## The VISS and its Payload



### **VISS**

- Vibration <u>Isolation</u> From Spacecraft
- Vibration <u>Suppression</u> of Payload Disturbances
- Payload Steering

### **Payload**

- A Medium Wave Infared Telescope
- Weight: 33 lb.
- Approximate Size: 10 in. Dia. by 25" long
- Approximate Mounting: 8" Equilateral Triangle

#### **VISS Performance Parameters**

- Vibration Isolation > 20 dB for freq. at frequencies > 5 Hz
- • $\pm$  0.3 deg Precision steering of optical payload with accuracy of 0.02 deg.
- >20dB Suppression of on-board cryocooler harmonics (55 and 110 Hz)
- •System weight (including electronics): 34 lb.
- •System size envelope (16.4" x 15.0" x 6.2")

### **VISS Hardware**



3896-10-2/3C ·

### **Specifications**

- Electronic Box Weight: 14 lb.
- Actuator Element Weight: 2 lb.
- Total VISS System Weight: 35 lb.
- Bus Voltage: 28 VDC
- Peak Power: 50W
- Length of Strut: 8 in.
- Actuator Force: 2 lb.

### **Features**

- Hybrid D-Strut<sup>TM</sup> Hexapod System
- Passive D-Strut
- Voice Coil Actuators
- Accelerometer Control Sensors
- Local Placed Accelerometer Conditioning Circuits
- Position Sensors for Information
- DSP C31-based Control Electronics
- Shape Memory (Frangibolt) Launch Locks

## **Features of Hybrid Actuator**



- Basic Elements Flight Qualified
- Synergistic Performance Active/Passive
- Large Stroke
- Fail-Safe Redundancy Features
- Adaptability
  - Passive Damping
  - Stiffness
  - Software Control
- Size, Weight, Power

# Spacecraft Vibration Modeling Example

### **RWA Disturbance Model**



Copyright, Honeywell Inc., 1997

### FEM "Stick" Model

- SIM Classic, mass model from baseline spreadsheet
- Mass: 1680 kg, Inertia: 16,700 kg-m<sup>2</sup> (worst axis)
- 50 modes below 440 Hz.



### **Disturbance Isolation**



- 20 Hz, three parameter passive isolation
- Active isolation w/ first four harmonics -20dB



# **Input Isolation and Structural Damping**



 RWA Axial Forces to Ext. DPL (Outer Siderostats Pair)

### Ext. OPD (RMS 0-400 Hz)

| Hardmount        | 78 nm |
|------------------|-------|
| Hardmount/damped | 24 nm |
| Isolated         | 3 nm  |
| Isolated/damped  | 1 nm  |



# **Output Isolation (Effect of Optical Control)**



Copyright, Honeywell Inc., 1997 tutorial\_imox.ppt

# Honeywell Structural Control Testbed

### Honeywell

## **Testbed: Structural Control Toolbox Validation**





Copyright, Honeywell Inc., 1997 tutorial\_imox.ppt

### Honeywell

### Vibration Problems and Potential Solutions

**Problem Frequency Description** Solution **Product Application** A "few" appendage Honeywell modes **Tuned Mass Damper** Many structural Honeywell D-Strut™ resonances **Structural Damper High frequency** Honeywell D-Strut™ base motion **Passive Viscous Isolator Honeywell Hybrid** Payload disturbance D-Strut™ and pointing, low Vibration Isolation, frequency base motion. Suppression and **Steering System (VISS)** Launch induced vibrations on entire **Honeywell Launch** spacecraft **Vehicle Isolation System** (LVIS)



# **Precision Agile Spacecraft Testbed Demonstration**



Copyright, Honeywell Inc., 1997

### Honeywell

### **Structural Control Testbed**

#### **Passive Structural Control**

- D-Struts<sup>TM</sup>
- Tuned Mass Dampers (TMD)







#### **Attitude Control**

- RWA/CMG's
- Momentum Systems
- GPS/IMU



#### **Active Structural Control**

- Hybrid D-Struts<sup>™</sup>
- Proof Mass Actuators
- Fiber Optic Sensors



#### **Precision Payload Isolation** and Pointing

- VISS Hexapod
- Two-Axis Gimbal
- Inertially Stabilized Bench



**Representative Flexible Bus Structure** 

#### **Input Isolation**

- Isolated RWA/CMG's
- Isolated Momentum Array
- SAD IV Reduction



#### **Structural ID/Control**

- Autonomous Identification
- Command Input Shaping
- Modern Control Theory



# **Modeling and Design Validation**



Copyright, Honeywell Inc., 1997 tutorial\_imox.ppt

# **Launch Vibration Isolation**

## **Launch Vehicle and Payload Interaction**

#### **Problems**



#### **Solutions**

#### Over Design the Satellite

- Stiffen all Structure to Handle loads
- Pay weight penalty on orbit
- Pay increased bearing size penalty
- Limit size and weight by which satellite can be reduced
- Increased need for larger launch vehicles

#### **Reduce the Environment**

- Isolate the payload attach fitting(PAF)
- Maintain rattlespace constraints
- Reduce the axial and lateral loads
- Allow for reduced stiffness of payload
- Insure common environment across launch vehicle fleet to save cost
- Use Honeywell Patented D-Strut<sup>™</sup> and Cross-Link Technology

### **Satellite Launch Load Environments**



- Variable loads on Satellite for each Launch Vehicles without standard interface
- Dictates individual design and qualification of each Spacecraft and Launch Vehicle combination
- Implies large NRE cost for large constellation deployment with more than one launch platform

Copyright, Honeywell Inc., 1997 tutorial\_imox.ppt

# **Entire Spacecraft Launch Vibration Isolation**



- •Deterministic Multi-pod configuration (e.g. Octapod or Hexapod)
- •All 6 Degrees of Freedom Isolated
- Attenuation of Axial and Lateral Loads
- •Tunable Break Frequency Design
- •Easily Adapted Damping and Stiffness Parameters
- •Fits Within Existing Payload Adapter Fairing Volume

# **Hydraulic Cross-link System**

- Solution for limited lateral rattlespace
- Honeywell patented



Copyright, Honeywell Inc., 1997

# **Launch Isolation Modeling**



Copyright, Honeywell Inc., 1997

### **Conclusions**

- Spacecraft are increasingly becoming precision spacecraft and the need for vibration modeling and control is evident
- Proper modeling of disturbances, performance metrics, and structural transfer is key to the system engineering approach to vibration control
- Input isolation, passive and active structural control, and output isolation & pointing are the tools used to meet vibration performance goals
- Vibration isolation of the entire spacecraft from launch loads can significantly reduce spacecraft cost and weight
- Flight qualified hardware exists to implement each of these solutions